Series Convergence Tests
Divergence Test
If $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
Examples of Divergence Test
- $\displaystyle\sum_{n=1}^{\infty} n$
- $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n}$
Comparison Test
Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If there exists a positive constant $C$ such that $a_n \leq Cb_n$ for all $n$, then:
- If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
- If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\in