(778) 554-3321 [email protected]

    \[ \begin{document} 	\section*{Series Convergence Tests} \begin{multicols}{2}	 	\subsection*{Divergence Test} 	If $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges. \subsubsection*{Examples of Divergence Test} \begin{multicols}{2}	 	\begin{enumerate} 		\item $\sum\limits_{n=1}^{\infty} n$ 		\item $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ 	\end{enumerate} \end{multicols} 	\subsection*{Comparison Test} 	Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If there exists a positive constant $C$ such that $a_n \leq Cb_n$ for all $n$, then: 	\begin{enumerate} 		\item If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges. 		\item If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\infty} b_n$ diverges. 	\end{enumerate} \subsubsection*{Examples of Comparison Test} \begin{multicols}{2} 	\begin{enumerate} 		\item $\sum\limits_{n=1}^{\infty} \frac{1}{n^2 + 1}$ and $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ 		\item $\sum\limits_{n=1}^{\infty} \frac{1}{n}$ and $\sum\limits_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ 	\end{enumerate} \end{multicols} 	\subsection*{Limit Comparison Test} 	Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists and is a positive finite number, then $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ either both converge or both diverge. \subsubsection*{Examples of Limit Comparison Test} \begin{multicols}{2} 	\begin{enumerate} 		\item $\sum_{n=1}^\infty \frac{1}{n^3+1}$  		\item $\sum_{n=1}^\infty \frac{\sqrt{n}}{n^2+1} $ 	\end{enumerate} \end{multicols} 	\subsection*{Ratio Test} 	Suppose $\sum_{n=1}^{\infty} a_n$ is a series with positive terms. If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exists and is a number $L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely. If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n}$ exists and is a number $L > 1$ or diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. If $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = 1$, then the test is inconclusive. \subsubsection*{Examples of Ratio Test} \begin{multicols}{2} 	\begin{enumerate} 		\item $\sum\limits_{n=1}^{\infty} \frac{2^n}{n!}$ 		\item $\sum\limits_{n=1}^{\infty} \frac{n^3}{3^n}$ 	\end{enumerate} \end{multicols} 	\subsection*{Root Test} 	Suppose $\sum_{n=1}^{\infty} a_n$ is a series with positive terms. If $\lim_{n \to \infty} \sqrt[n]{a_n}$ exists and is a number $L < 1$, then $\sum_{n=1}^{\infty} a_n$ converges absolutely. If $\lim_{n \to \infty} \sqrt[n]{a_n}$ exists and is a number $L > 1$ or diverges, then $\sum_{n=1}^{\infty} a_n$ diverges. If $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$, then the test is inconclusive. \subsubsection*{Examples of Root Test}	 \begin{multicols}{2} 	\begin{enumerate} 		\item $\sum\limits_{n=1}^{\infty} \frac{3^n}{n!}$ 		\item $\sum\limits_{n=1}^{\infty} \frac{1}{n^n}$ 	\end{enumerate} \end{multicols} \subsection*{Integral Test}  Let $f(x)$ be a continuous, positive, and decreasing function on $[1,\infty)$. Then the series $\sum_{n=1}^\infty f(n)$ converges if and only if the improper integral $\int_1^\infty f(x) dx$ converges. If the integral diverges, then so does the series. \subsubsection*{Examples of Integral Test} \begin{multicols}{2} \begin{enumerate} 	\item $\sum\limits_{n=1}^{\infty} \frac{1}{n^2}$ 	\item $\sum\limits_{n=2}^{\infty} \frac{1}{n\ln(n)}$ \end{enumerate} \end{multicols} \end{multicols} \end{document} \]

Series Convergence Tests

Divergence Test

If $\lim_{n \to \infty} a_n \neq 0$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.

Examples of Divergence Test

  1. $\displaystyle\sum_{n=1}^{\infty} n$
  2. $\displaystyle\sum_{n=1}^{\infty} \frac{1}{n}$

Comparison Test

Suppose $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If there exists a positive constant $C$ such that $a_n \leq Cb_n$ for all $n$, then:

  • If $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.
  • If $\sum_{n=1}^{\infty} a_n$ diverges, then $\sum_{n=1}^{\in